Discriminating coded lambda terms

Dedicated in friendship to Cor Baayen

on the occasion of his retirement
Henk Barendregt

Computing Science Institute

Catholic University Nijmegen

Department of Software Technology
CWiI, Amsterdam

A coding for a (type-free) lambda term M is a lambda term " M 'in normal
form such that M (and its parts) can be reconstructed from " M 'in a lambda

definable way. Kleene[1936] defined a coding " M ' and a self-interpreter
EX €A° such that

VMeA® EXT M = M. (1)

In this style one can construct a discriminator AT €A° such that

VM. NeA AKT A Kr yE - true (f Axzy.x) if M = N; (2)
false (= Azy.y) else.

The terms EX and A® are complicated. They depend on the lambda defin-
ability of functions on the integers dealing with coded syntactic properties.
Inspired by a construction of P. de Bruin (see Barendregt [1991]) Mogensen

[1992] constructed a different coding " M ' and an efficient selt-interpreter
EcA® such that

VMeAE" M '= M. (3)

This construction does not use an encoding of syntax as numbers but directly
as lambda terms. This results in a much less complex E. Mogensen’s
construction was simplified even further in Bohm et al. [1994]. In this paper
we construct a simple discriminator A€A® such that

true if M =, N:
false else.

(4)

Note that in (1) and (4) the statement is only about closed lambda terms,

while that in (2) and (3) is about all lambda terms. It will become clear why
this 1s so.

VM, NeA° ATMT N = {

141

1. INTRODUCTION

T'he most important notations for the type-free lambda calculus will be given
here. Background can be found in Barendregt [1984].

1.1. DEFINITION. Variables and terms of the lambda calculus are defined by
the following abstract syntax.

J

var a | var'

term = var |term term | A var term
NOTATION. (i) M,N,...,P,Q,... range over A-terms. The letters xr, Y, z, .
range over variables. Note that the variables are {a,a’,d”,... a!"™ .. .}.

(i1) A is the set of lambda terms. FV(M) is the set of free variables of
M .The set of closed terms is A° = {MeA |FV(M) = 0}.

(1ii) The relation = denotes syntactic equality; the relation =,, denotes Syn-
tactic equality up to a change of names of the bound variables. For example

AT.Z =, A\Y.Y ZE AL.T.
(iv) The relation = denotes B-convertibility, axiomatized by
(Az.M)N = M|z := NJ.
Here |x := n| denotes substitution of NV in the free occurrences of z. E.g.
(z(Az.x))|x := a] = a(Ax.x).

(v) IN is the set of natural numbers. For n€IN the terms ¢, = A\ fz.f"z.

where f'r = z and f*tlz = f (f"x), denote the so called Church numerals.
Note that the c,, are distinct normal forms; hence

by the Church-Rosser theorem.

A lambda term can be seen as an executable: the redexes want to be eval-
uated. In this sense a normal form is not executable anymore. For a lambda

term M its code "M ™ is a normal form such that M is reconstructible from M.
Kleene {1936] defined a code "M ¥ essentially as follows.

1.2. DEFINITION. (i) By induction on the structure of M we define # M.

#(a'™) = <0,n>;
#(PQ) = <1, <#(P),#(Q) >>;
#(Az.P) = <2,< #(z),#(P) >>.

Here < —,— > denotes a recursive pairing function on IN with the recursive
projections (—)g, (—)1:
(< ng,ny1 >); = n,.

142

(ii) The map "—"" : A—A is defined by
"MK = ey
Note that for all M €A the term "M is in normal form. Moreover,
"M =N = M =N.

1.3. PROPOSITION. There is no lambda term Q such that for all MeA'®) one
has

QM ="M"®.
PROOF. Suppose @ exists. Then for | = Az.x one has

— K __ _
Q) ="1"" = Collh) = Coq <l s>

But also
K
QU = QI ="1"" = ¢y = Caz, cp(w) #(2)>>

Hence < 1, < #(1), #(1) >>=< 2, < #(x), #(x) >>, a contradiction. &

In spite of this fact that the ‘quote’ @ does not exists, the inverse ‘evaluation’
E can be constructed.

1.4. THEOREM (Kleene [1936]). There ezists an E* €A° such that for all MeA°
one has

EXTMTE = M.
PROOF. See Kleene [1936] or Barendregt [1984], theorem 8.1.16. M

The self-interpreter E can work only for closed terms M (or terms having at
most a fixed finite set of free variables). The reason is that if

EECAME = M.
then

FV(M) C FV(EXTME) = FV(ER).

Therefore if EX is closed, then the M have to be closed as well. This causes one
difficulty in the construction of EX. The closed terms do not form a context-
free language. Kleene solved this problem by constructing E first for the set ot
combinatory terms C° built from the basis {K,S} using application only; then
the real self-interpreter can be obtained by translations between A° and C°.

A different construction of a self-interpreter was given by a former student
of mine, using ideas from denotational semantics.

1.5. THEOREM (P. de Bruin). There exists an Eq€A° such that for all MeA
and all FEA one has

Eo" M F = Mlxy,...,2,:=F a7, ..., Flax, (5)

(simultaneous substitution), where {x1,...,Tn} = FV(M).

143

PROOF. By the representability of computable functions and the fixedpoint
theorem there is a term Ey€A° such that

Eo"z " F = FgK,
Eo"PQ™™F = F(E,\ P F)(E,\ Q"™ F);
Eo" Xz P F = Az.(Ey"P R Firosy),s
where Fir -, = F), with
F."x" = x;
F,my? = Fry", ify#ue.

Note that F, can be written as GFzx, with G closed. By induction on the
structure of M €A one can show that the statement holds. ®

1.6. COROLLARY. There exists an E4P€A° such that for all MEN® one has
ETM™ = M.
PROOF (P. de Bruin). We can take
E4B = Am.Eoml.
Indeed, for closed terms M it follows from (5) that
E‘°TM7=E"M =M m

2. REPRESENTING DATA TYPES

After seeing the method of P. de Bruin, Mogensen [1992] gave an improved ver-
sion of it by representing data types directly (i.e. not using the natural numbers)
in lambda calculus as done in e.g. Bohm and Berarducci [1985]. This approach
was improved later by Bohm et al. {1994]| by constructing a new representation
of data types into type-free lambda calculus. This new representation will be
treated in a slightly modified form in this section.

2.1. DEFINITION. Write

(My,...,M,) = Az.zM;...M,;
U:I —— AII ¢« » o -.I:na-wl;
true = Uf%;
false = U;.
Note that
<M1,...,Mn;>ng — Mi;
true PQQ = P;
false PQ = Q.

In particular we have (M) = Az.zM and () = Ax.x = . Now we define the
notion of lists inspired by the language LISP, McCarthy et al. [1961].

144

2.2. DEFINITION. (1) Write

nil = {);

cons = Ary.{.r,y);

car = (U%);
cdr = (U3):
null, = (U3.Uj, false, true).

(11) Dehine

o= ()
[ﬁ-ﬁ’fl o om e A"fn+1§ COIlS Afl [f\ffg., “ s Ajrﬁ-li-

|

So for example
(M, Mo, M3| = (M, (Ma, (M3, ()))).

(In Barendregt [1984] this term is written as [Ay, Mo, M3 1], At the time of
writing that book we did not yet see the usefulness of terminating a list with
a special constructor.) Note that

|

car (cons P(Q)) P

cdr (cons PQ) = Q;:
nullynil = true;
null,(cons PQ)

]

false.

2.3. PROPOSITION. There erists lambda definable functions (); such that for
1 <12 <n one has

([Affl Ve f\{[”])i = M,.
PROOF. Take

car (:
(cdrl)a;. -

(1)1
(1)i+1

2.4. DEFINITION. An (algebraic) signature s consists of a number n€IN (thought
of as the list of symbols [f;,..., f,]) together with a list of numbers (145 Snl
(thought of as the arity of the respective f;’s). We write s = [s1,...,5,].

I

I

For example a field has signature s = [2,2,1,1,0,0] (thought of as the arities
of the functionsymbols [+, x, —, 71,0, 1]; so fi = +, fo = X etcetera).

2.5. DEFINITION. If s is a signature then term,, the set of terms of signature
s, 1s defined as follows.

revar = reterms,

t1,....ty €Eterm, = fi(t1,...,t,,)€ term,.

145

For example in the signature of fields the term fi(fi(x, fs(f2(y, f4(2))), fe) 18
usually written as r — yz~ ! + 1.

2.6. DEFINITION. Let s = [s81,...,s,] be a signature.
(1) A lambda interpretation of s is a list of ‘constructors’ ('y,...,C,EA.
(i1) Let 'y, ...,C, be a lambda interpretation of s. Then we define a map

T : term ,—A

as follows.

T, = =x;
G’i[Ttla < -0 '}th«]’

~ 3

|

Tf*i(tl w'*-atéﬁi)

where [T,,..., T, | is the list operation on lambda terms defined in 2.2.

Example. The signature of binary trees is [0, 2]. The term t = fo(f2(f1, f1), f1)
denotes a simple tree and t' = fo(f1, fo(f1, f1)) its miror image. Can we find a
lambda interpretation for this signature in such a way that mirroring becomes
lambda definable, i.e. for some F'€A° one has FT; = T;.? The following result,
due to Bohm et al. [1994], will affirm this. We present the result in a modified
form that will be useful for §4.

2.7. THEOREM. For every algebraic signature s = |[sy,...,8,| there exists a
lambda interpretation Cy,...,C,, such that the following hold.
(i) VA,... A, 3F

FTf’i(tlw-“atﬁi) — AZ[Til’ et Ttﬁl]F'«" 1 < 2 < . (6)

(ii) The C4,...,C,, only depend on n, not on the {sy,...,s,|. In (6) we can
take F' = ((Aq,...,An)).

PROOF. Define Cy, = Ale.eUl(e).
(i) Given A,,...,A,, we try whether F' = ((A,,...,A,)) works. Indeed,

Fle 4, te,) = ((Ala---aAn>>(Cfi[Ttu---aTtﬂi])
Cfi'[Ttl,...,Tt%KAl,...,Aan)
(Al,...,An,)U?[Ttl,...,Tt%]«Al,...,Aa,;))
= Ai[Ttl,...,Tt%]F.

(ii) By the construction. ®

2.8. COROLLARY. Let s = [s1,...,8,] be an algebraic signature. Let Cy,...,C,

be the lambda interpretation of s constructed in theorem 2.7. Then for all
By ...B,, there exists an F' such that

F(Cf«j_[xla .- 7:1731-]) — Biﬂfl e .. Lg.

“7 1

F' 1 <7< n. (7)

146

PrOOF. Let By,..., B, be given. Define A; = Al.B;(l)1...(l)s,- Then
Ai[ﬂ.f;‘l, - . ,:1731.] = Bz-:r.l, e vy Lg, -
Then the F for the A; found in theorem 2.7 is the F' satisfying (7).

Now we can program the function that ‘mirrors’ trees. In the signature 0,2]
for binary trees let

leaf
tree

Iy,
)\ab.ng(aﬁb)

Cfl ()3
Aab.Cy,(a,b).

|
|

|
|

By corollary 2.8 there exists an F' such that

Fleaf
F(treeab)

leaf;
tree(fb)(fa).

This F' has the mirror eftect. k.g. F(fQ(fZ(flufl)afl)) = fa2(f1, f2(f1, f1))-

3. A SIMPLE SELF-INTERPRETER

In Mogensen [1992] a simple coding and self-interpreter for lambda terms is
defined, using the fact that data types (term algebras of a signature s) have
a lambda interpretation. The method was simplified by Bohm et al. [1994] by
making use of their lambda representation of algebraic signatures given in §2.

3.1. DEFINITION. Let s be the signature [1,2,1]. Define

const = C; = MNe.eUil(e);
app = C(Cf = Ae.eUsl{e);
abs = Cj = Me.eUjl(e).
3.2. DEFINITION. For M €A define "M 7 as follows.
"7 = const|z|;
"PQY = app|[P,"Q7;
“Az.P7 = abs[Az."P7|.

Note that FV("M ™) = FV(M).
3.3. THEOREM (Mogensen [1992]). There exists an EEA® such that
VMeA ETM™ = M.

PRrOOF (B”ohm et al. [1994]). By corollary 2.8 there exists a term E€A” such
that

E(const|[p]) = p;
E(app[p,q]) = (Ep)(Eq);
E(abs[p]) = >Xz.E(pzx).

147

Then

Er’ = &
Eﬁ-w F){Q 7 e { Efw }3 1 } { Eﬂw 63 ™ } :
E'Ar.P' = ArE" P

Now the results follows by induction on the structure of A/. =
Using the constructions in §2 the self-interpreter becomes

E = (A ML (f2), Mfe f((Dyx))).
The construction in Bohm et al. [1994] is simpler. They take

const = Are.eUjre;
app = Arye.eUjrye:
\re.cUP re.

| !
|
¥

abs

The resulting self-interpreter then becomes E¥ = ((K,S,C)). Here K = Ary.r,
S = Aryz.rz(yz) and €C = Aryz.r(zy). For reasons of uniformity we have given
the definition of const, appand absas in 3.1. This will be useful in &4.

4. A SIMPLE DISCRIMINATOR

In this section we will construct a simple term discriminating between coded
closed lambda termm. The discrimination is even modulo «-conversion. For open
terms discrimination is possible only for the coding ™ *® of Kleene.

4.1. LEMMA. (i) There erists a term dw€N° such that

é N Cn C?n —

true of = m;
false else.

(11) There erists a term and €A° such that

true ;

I

and true true
and true false = false;
and false true = false;

and false false = false.

PROOF. (i) By the representability of the recursive functions.
(i1) Take and = Aab.atruebd. ®

148

4.2. PROPOSITION. There erists a term ¢€AX° such that (writing &, for 6¢,,)
one has
e T . .
ot T = NI
&, P = false:
&, r A P = false:

o, PQ — false:
5, PQTPIQ = and(6," PTTP)S,TQTTQ T
6, " PQ " Ar'. P77 = false;

6, Ae. P — false:

&, Ax. PTP'QQ"7 = false:

SN, PN P - & (TP W o INVT P ! e '
é'{n A.F- f #\J» . P - b“ﬂ, M.é. l (E iul u C»y'% E) (‘Qﬂ }} ag.j@) —— C,H?} } Y

Proor. We introduce the following ad hoc notation.
(1) Let A4,....,A,,€A. Then we write

f\f!{ﬁ%lg “ s e on 4’4”} o <<£\;F»i¢1}-, oo ou f\f-fi.g!}}.

(ii) If B, = [A4i1,.... A;,], then we write
AN By, ... B, = (AF1By, ..., AF!1B,)).
(iii) Let for 1 <1 <

o

n,1 < j < nbegiven A;;€A. Then
{Azj] b “1‘4 1140 -0 s A “J,

{"421 LR fﬂﬁ?‘a}w

[-Anl JRICIEIE -x’qnnﬂu

If n = 3 we may write [A,;] as

Ay A A
A21 Az Az
Asz1r Azx Asg

Now define & = \ntt’.

dv(t)(t), false false
AdIAt'd n!'| false and (d(#); (¢)1n)(d(t)2(t)2n) false tt'n,
false false d(tr)(t') (STn)

where ST lambda defines the successor function. This é satishies the specifica-
tion. W

4.3. PROPOSITION. For all M, M'eA such that FV(MAM') C {xy,...,1,} and
for substitutions x = [ry ;= ¢g,]...[rn =k, | wWith k, # k; (for1 < i< j < n)
one has forp > k; (for all 1 <i < n) that

true &f M =y Af’:

&, TA A % =
p false else.

149

PROOF. By induction on the structure of M, in each case making distinctions
according to the structure of M’. We treat four instructive cases.
Case M = o, M’ = z’. Then

61')[_1‘/1-“.—]‘{,.1* - 6INCA‘Tzck@f ’

where r = r;, 2" = x;. This is true or false depending on whether r = r’ (so
t=11)orx Zx' (soi#1i).

Case M = x, M’ = P'()'. Then

6," M"M' % = false.

Case M = PQ, M’ = P’'QQ'. Then

6yt MM % = and (6," PP %)(6," Q" Q' %)
=y and (true / false){ true / false)
= true /false,

as it should (= true only if PQ = P'Q’ i.e. if both P = P’ and Q = Q’).
Case M = A x.P,M' = \x'.P'. Then

Op" MM % = 6,11 (TP x :=c¢,])("P' 2" :=¢,)]) *
bp41" PP [x" :=] x := ¢p] %
bp1" PP [x" = x] 7,

with * = x[z := ¢,| being an admissible substitution. So

true if P =, P'[2' := x];

6p" MM % =1 p { false else

Now M =, M' iff Ae. P =, M\x'.P' (=, Az.P'[2' :=z]) if P =, P'[x' := &].
Hence we are done. B

4.4. COROLLARY. Write A = &g. Then for all M, A€ A° one has

AF A IF A — true if M =, M';
false else.
PROOF. Immediate from the proposition. B

Note that this corollary cannot hold for arbitrary M, AM'eA. For example,
it is impossible to discriminate "x7 and "x'". Indeed take x Z z’ and make a
substitution:

ATx "Wz = false = ATz ""z'= false,

a contradiction.

1 R0

REFERENCES

BARENDREGT, H.P.

(1984] The Lambda Calculus, its Syntax and Semantics, revised edition, Studies

in Logic and the Foundations of Mathematics, North-Holland, Amster-
dam.

[1991] Theoretical pearls: Self-interpretation in lambda calculus, J. Funct. Pro-
gramming, 1(2), 229-233.
BouwMm, C., and A. BERARDUCCI

[1985] Automatic synthesis of typed A-programs on term algebras, Theor. Com-
put. Sci. 39, 135-154.

BouM, C., A. PIPERNO and S. GUERRINI

(1994] A-definitions of function(al)s by normal forms, in: ESOP 94, (ed. D. San-
nella), LNCS 788, Springer, Berlin, 135-149

CHURCH, A.

(1941] The calculi of lambda conversion, Princeton University Press, Princeton.
Reprinted by Kraus reprint corporation, New York, 1965.

KLEENE, S.C.
[1936] A-definability and recursiveness, Duke Math. J. 2, 340-353.

McCARTHY, J., P.W. Apams, D.J. EDWARDS, T.P. HART and M.l. LEVIN
[1962] LISP 1.5 Programmer’'s manual, MIT Press.

MOGENSEN, T.A.

[1992] Efficient self-interpretation in lambda calculus, J. Funct. Programming,
2(3), 345-364.

151

